Graph-based Word Sense Disambiguation of biomedical documents

نویسندگان

  • Eneko Agirre
  • Aitor Soroa
  • Mark Stevenson
چکیده

MOTIVATION Word Sense Disambiguation (WSD), automatically identifying the meaning of ambiguous words in context, is an important stage of text processing. This article presents a graph-based approach to WSD in the biomedical domain. The method is unsupervised and does not require any labeled training data. It makes use of knowledge from the Unified Medical Language System (UMLS) Metathesaurus which is represented as a graph. A state-of-the-art algorithm, Personalized PageRank, is used to perform WSD. RESULTS When evaluated on the NLM-WSD dataset, the algorithm outperforms other methods that rely on the UMLS Metathesaurus alone. AVAILABILITY The WSD system is open source licensed and available from http://ixa2.si.ehu.es/ukb/. The UMLS, MetaMap program and NLM-WSD corpus are available from the National Library of Medicine https://www.nlm.nih.gov/research/umls/, http://mmtx.nlm.nih.gov and http://wsd.nlm.nih.gov. Software to convert the NLM-WSD corpus into a format that can be used by our WSD system is available from http://www.dcs.shef.ac.uk/∼marks/biomedical_wsd under open source license.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Summarization of Biomedical Documents Using Word Sense Disambiguation

We describe a concept-based summarization system for biomedical documents and show that its performance can be improved using Word Sense Disambiguation. The system represents the documents as graphs formed from concepts and relations from the UMLS. A degree-based clustering algorithm is applied to these graphs to discover different themes or topics within the document. To create the graphs, the...

متن کامل

Semantic Relatedness for Biomedical Word Sense Disambiguation

This paper presents a graph-based method for all-word word sense disambiguation of biomedical texts using semantic relatedness as edge weight. Semantic relatedness is derived from a term-topic co-occurrence matrix. The sense inventory is generated by the MetaMap program. Word sense disambiguation is performed on a disambiguation graph via a vertex centrality measure. The proposed method achieve...

متن کامل

DALE: A Word Sense Disambiguation System for Biomedical Documents Trained using Automatically Labeled Examples

Automatic interpretation of documents is hampered by the fact that language contains terms which have multiple meanings. These ambiguities can still be found when language is restricted to a particular domain, such as biomedicine. Word Sense Disambiguation (WSD) systems attempt to resolve these ambiguities but are often only able to identify the meanings for a small set of ambiguous terms. DALE...

متن کامل

Can multilinguality improve Biomedical Word Sense Disambiguation?

Ambiguity in the biomedical domain represents a major issue when performing Natural Language Processing tasks over the huge amount of available information in the field. For this reason, Word Sense Disambiguation is critical for achieving accurate systems able to tackle complex tasks such as information extraction, summarization or document classification. In this work we explore whether multil...

متن کامل

Sense-Based Biomedical Indexing and Retrieval

This paper tackles the problem of term ambiguity, especially for biomedical literature. We propose and evaluate two methods of Word Sense Disambiguation (WSD) for biomedical terms and integrate them to a sense-based document indexing and retrieval framework. Ambiguous biomedical terms in documents and queries are disambiguated using the Medical Subject Headings (MeSH) thesaurus and semantically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 26 22  شماره 

صفحات  -

تاریخ انتشار 2010